2007 Vol. 9, No. 15 2783–2786

Samarium Triflate-Catalyzed Halogen-Promoted Friedel—Crafts Alkylation with Alkenes

Saumen Hajra,* Biswajit Maji, and Sukanta Bar

Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India shajra@chem.iitkgp.ernet.in

Received April 5, 2007

ABSTRACT

ArH + R¹
$$R^2$$
 R^2 R^2 R^2 R^2 R^3 R^4 R^2 R^4 R^4 R^5 R^4 R^5 R^4 R^5 R^6 R^6

A versatile and efficient halogen-promoted highly regio- and stereoselective Friedel–Crafts (F-C) alkylation with alkenes has been developed with use of easily available and inexpensive NBS or I_2 as the efficient halogen sources. Lewis acids, in particular metal triflates, are found to be effective catalysts for this halogen-promoted F-C alkylation. Among these, Sm(OTf)₃ was the best catalyst. Electron-rich arenes smoothly underwent F-C alkylation with a variety of alkenes including α , β -unsaturated carbonyl compounds.

Friedel—Crafts (F-C) alkylation with alkenes is one of the most important C-C bond-forming reactions in organic chemistry.1 These reactions are usually assisted by either protic acid or Lewis acid. On the basis of the mode of reaction, this F-C alkylation might be categorized as (i) reaction of arenes with normal alkenes via carbocation-like intermediates. (ii) reaction with electron-deficient alkenes via 1,4-conjugate addition, (iii) reaction of arenes with stable intermediate compounds derived from alkenes such as epoxides, and (iv) reaction with reactive intermediates generated in situ from alkenes such as three-membered halonium ions (Scheme 1). Among these, reactions with normal alkenes catalyzed by protic acid or Lewis acid have been extensively investigated. 1,4-Conjugate addition of arenes to electron-deficient alkenes are mostly limited to indoles as arenes.² Ring-opening of epoxides with arenes is also known in the literature.3 However, to the best of our knowledge, intermolecular F-C alkylation with alkenes via

Scheme 1. Different Modes of F-C Alkylation with Alkenes

$$R^{1} \xrightarrow{R^{2}} R^{2}$$

halonium ions has not been reported. Interestingly, these alkylated arenes containing α -halo functionality could provide a further avenue for structural elaboration. Herein we report NBS/I₂-promoted intermolecular Friedel—Crafts alkylation with a variety of alkenes including α,β -unsaturated carbonyl compounds catalyzed by Sm(OTf)₃ that provide an alternate method for synthesis of 1,1-diaryl-2-halo alkanes and α,α -diaryl- β -halocarbonyl compounds, respectively.

⁽¹⁾ For reviews of Friedel—Crafts alkylation reactions, see: (a) Olah, G. A. Friedel—Crafts and Related Reactions; Wiley-Interscience: New York, 1964; Vol. II, part 1. (b) Roberts, R. M.; Khalaf, A. A. Friedel—Crafts Alkylation Chemistry: A Century of Discovery; Dekker: New York, 1984. (c) Olah, G. A.; Krishnamurthi, R.; Prakash, G. K. S. Friedel—Crafts Alkylations in Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, UK, 1991. (d) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550-556.

A current interest in our laboratory is the stereoselective 1,2-halo functionalization of alkenes.⁴ We found that Lewis acids, in particular metal triflates, activate NXS to facilitate the formation of halonium ions from alkenes. Recently we have reported Lewis acid-catalyzed and *N*-halosuccinimide (NXS)-promoted intramolecular F-C alkylation with tethered alkenes for the synthesis of annulated arene heterocycles and carbocycles (Scheme 2).^{4e} Accordingly, we anticipated that

Scheme 2. Halogen-Promoted Intramolecular F-C Alkylation with Tethered Alkenes

$$R^{1} = H, OMe R^{2} = Alkyl, aryl X = Br, I$$

$$R^{1} = H, OMe Z = R^{1} = R + R^{1}$$

$$R^{2} = Alkyl, aryl X = Br, I$$

$$R^{3} = Alkyl, aryl X = Br, I$$

a suitable Lewis acid might, similarly, catalyze NXS-promoted intermolecular F-C alkylation of arenes with alkenes. For this purpose, we screened different Lewis acids, in particular metal triflates, as catalysts for halogen-promoted F-C alkylation of 1,2-dimethoxybenzene with 1,2-dihydronaphthalene (Table 1). Mg(OTf)₂, La(OTf)₃, Yb(OTf)₃,

Table 1. Screening of Lewis Acids as Catalysts for the Halogen-Promoted F-C Alkylation with Alkenes

	ML_n	conv.a (%)	yield b of 3 (%)
1	none	20	<5 (12) ^c
2	CoCl_2	40	$<$ 5 (20) c
3	MgCl_2	65	$8 (25)^c$
4	$ m NiCl_2$	80	$< 5 (35)^c$
5	CuCl_2	93	$7 (35)^c$
6	$\mathrm{Cu_2Cl_2}$	90	$12 (27)^c$
7	$Mg(OTf)_2$	100	$41 (18)^c$
8	$La(OTf)_3$	100	$43 \ (21)^c$
9	$Y(OTf)_3$	100	61 (17)
10	$Yb(OTf)_3$	100	65 (18)
11	$Zn(OTf)_2$	100	72(12)
12	$Cu(OTf)_2$	100	71 (10)
13	$Sm(OTf)_3$	100	78 (7)

 a Determined from the $^1\mathrm{H}$ NMR spectra of the crude reaction mixture with anthracene as internal standard. b Yields in parentheses refer to the yields of 1,2-dibromotetralin. c Along with 10–25% of nonseparable unidentified byproducts.

Y(OTf)₃, Cu(OTf)₂, Zn(OTf)₂, and Sm(OTf)₃ showed good catalytic activity (entries 7–13). Among these, Sm(OTf)₃ was found to be the best catalyst and acetonitrile a suitable

solvent. It is noteworthy that in the absence of metal triflates, the reaction did not produce any F-C alkylated product (entry 1).

To study the scope of this halogen-promoted F-C alkylation, reactions of arenes with various types of alkenes were carried out (Table 2). In all cases, the reactions successfully

Table 2. Sm(OTf)₃-Catalyzed Halogen-Promoted F-C Alkylation with Alkenes^a

1a: toluene

1b: o-xylene

1c: anisole

1d: 1,2-dimethoxy benzene

1e: 1,2,3-trimethoxy benzene

•					
alkene 2	ArH 1	temp	halogen source	time (h)	yield of 3 ^b (%)
		(-/			
	1a	25	NBS	12	40
	1b	25	NBS	12	43
	1 c	25	I_2	4	58
	1d	25	I_2	3	52
MeO	1d	-20	NBS	0.5	51
MeO	1c	-20	NBS	0.5	62
^ ^	1c	0	NBS	4	52
	1d	0	NBS	3	75
~ ~	1e	0	NBS	2	72 ^e
	alkene 2	alkene 2 ArH 1 Ia 1b 1c 1d MeO Id MeO Ic 1d Id Id Ic Id Id Id Id Id Id Id	ArH temp 1 (° C)	alkene 2 ArH temp 1 halogen source 1a 25 NBS 1b 25 NBS 1c 25 I ₂ 1d 25 I ₂ Me 1d -20 NBS 1c -20 NBS 1c 0 NBS 1d 0 NBS	alkene 2 ArH temp full (° C) halogen source (h) time source (h) 1a 25 NBS 12 1b 25 NBS 12 1c 25 I₂ 4 1d 25 I₂ 3 Meo 1d -20 NBS 0.5 Meo 1c -20 NBS 0.5 1c 0 NBS 4 1d 0 NBS 3

 a Sm(OTf)₃ (0.05 equiv)-catalyzed F-C alkylation was performed with 1.0 equiv of alkene, 1.2 equiv of arene, 1.2 equiv of NBS (or 1.2 equiv of I_2 and 1.2 equiv of NaHCO₃) in CH₃CN. b Isolated yields of **3** after column chromatography; also 5−20% of halogen addition products were obtained. c Arene **1** was used as a cosolvent along with CH₃CN (CH₃CN:ArH 4:1). d Alkene **2** was used in excess (2−3 equiv). e Along with 20% of trimethoxy bromobenzene as a nonseparable mixture.

proceeded to afford the corresponding alkylated products containing an α -halofunctionality in moderate to good yields. Toluene and o-xylene were used as cosolvents along with CH₃CN to afford clean products (entries 1 and 2). Electronrich arenes such as anisole and 1,2-dimethoxybenzene underwent smooth reaction with styrene, when I_2 was used as a halogen source along with NaHCO₃ as an additive (entries 3 and 4). Halogen-promoted F-C alkylations with

2784 Org. Lett., Vol. 9, No. 15, 2007

^{(2) (}a) Harrington, P. E.; Kerr, M. A. Synlett **1996**, 1047–1048. (b) Manabe, K.; Aoyama, N.; Kobayashi, S. Adv. Synth. Catal. **2001**, 343, 174–176. (c) Bandani, M.; Cozzi, P. G.; Giacomini, M.; Melchiorre, P.; Selva, S.; Umani-Ronchi, A. J. Org. Chem. **2002**, 67, 3700–3704. (d) Bandani, M.; Melchiorre, P.; Melloni, A.; Umani-Ronchi, A. Synthesis **2002**, 1110–1114. (e) Bandini, M.; Fagioli, M; Melloni, A.; Umani-Ronchi, A. Synthesis **2003**, 397–402. (f) Srivastava, N.; Banik, B. K. J. Org. Chem. **2003**, 68, 160–163

⁽³⁾ For examples, see: (a) Taylor, S. K.; May, S. A.; Stansby, E. S. *J. Org. Chem.* **1996**, *61*, 2075–2080. (b) Reddy, R.; Jaquith, J. B.; Neelagiri, V. R.; Saleh-Hanna, S.; Durst, T. *Org. Lett.* **2002**, *4*, 695–697. (c) Nagumo, S.; Miyoshi, I.; Akita, H.; Kawahara, N. *Tetrahedron Lett.* **2002**, *43*, 2223–2226.

Table 3. Sm(OTf)₃-Catalyzed Halogen-Promoted F-C Alkylation with α , β -Unsaturated Carbonyl Compounds^a

ArH+Ar'

R³

$$R^3$$
 R^3
 R^3

entry	ArH 1	Ar'	\mathbb{R}^3	time (h)	yield ^b (%)
1	1c	4-MeOC ₆ H ₄	OMe	12	77
2	1d	$4\text{-MeOC}_6\mathrm{H}_4$	OMe	12	91
3	1e	4-MeOC_6H_4	OMe	12	80^c
4	1d	$3,4\text{-MeOC}_6H_3$	OMe	12	85
5	1e	$3,4\text{-MeOC}_6H_3$	OMe	12	76^c
6	1d	2-furyl	OMe	1	51
7	1d	$3,4\text{-MeOC}_6H_3$	$\mathrm{C_6H_5}$	3.5	79
8	1e	$3,4\text{-MeOC}_6H_3$	C_6H_5	3.5	71^c
9	1d	$4\text{-MeOC}_6\mathrm{H}_4$	2-MeOC_6H_4	4	90
10	1 e	$4\text{-MeOC}_6\mathrm{H}_4$	$2\text{-MeOC}_6\mathrm{H}_4$	4	90^c

^a Sm(OTf)₃ (0.05 equiv)-catalyzed F-C alkylation was performed with 1.0 equiv of alkene, 1.2 equiv of arene, 1.2 equiv of NBS in CH₃CN at 15 °C. ^b Isolated yields of **5** after column chromatography. ^c 10−15% of trimethoxy bromobenzene was obtained.

electron-rich alkenes, e.g., p-methoxy- β -methylstyrene and p-methoxy- β -propylstyrene, were carried out at -20 °C to afford clean F-C alkylated products. Improved yields were obtained when styrenes were used in excess (entries 5 and 6). Reactions of toluene and anisole with alkenes exclusively produced para-substituted adduct. No ortho-regioisomer was detected from the ¹H NMR of the crude reaction mixture. Reactions of anisole, 1,2-dimethoxybenzene, and 1,2,3trimethoxybenzene with 1,2-dihydronaphthalene produced 1-aryl-2-halotetralins in good yields (entries 7-9). The other regioisomer 2-bromo-1-(3,4,5-trimethoxyphenyl)-1,2,3,4-tetrahydronaphthalene from 1,2,3-trimethoxybenzene was not detected. It is to be noted that 1-aryl-2-halotetralins could be key intermediates for the synthesis of many biologically important compounds⁵ by replacing the halogen atom with suitable nucleophiles.

 α,β -Unsaturated carbonyl compounds represent a synthetically useful class of substrates for various alkene addition

reactions. In particular, halogen-promoted F-C alkylation of α,β -unsaturated carbonyl compounds, especially of cinnamate and chalcon would provide α -halo- β,β -diarylcarbonyl compounds, which could be transformed into various useful organic compounds by replacing the halogen with a series of nucleophiles. More interestingly, β,β -diarylcarbonyl compounds are important structural motifs found in many natural products and a number of pharmaceuticals. Different electron-rich arenes smoothly underwent NBS-promoted F-C alkylation with a number of cinnamates and chalcones at 15 °C and produced α -bromo- β,β -diarylcarbonyl compounds in high yields (Table 3).

 $Sm(OTf)_3$ was found to be an efficient catalyst for the halogen-promoted F-C alkylation with alkenes including α , β -unsaturated carbonyl compounds and provided *anti*-1,2-haloarylated products in moderate to good yields. It seems that $Sm(OTf)_3$ activates NBS by chelation to facilitate the formation of halonium ions from alkenes and the subsequent reactions with arenes led to the formation of F-C alkylated products along with regenaration of Sm(III) catalyst. Thus a plausible mechanism has been proposed for $Sm(OTf)_3$ -catalyzed halogen-promoted F-C alkylation reactions (Scheme 3). However, further investigations are warranted to support this proposal.

Scheme 3. Proposed Mechanism for Sm(OTf)₃-Catalyzed Halogen-Promoted F-C Alkylation

We have developed a highly regio-, stereo-, and chemoselective halogen-promoted Friedel—Crafts alkylation of aromatic compounds with alkenes using inexpensive and easily available NBS or I_2 as a halogen source. These reactions are catalyzed by Lewis acids, in particular metal triflates. Among these, $Sm(OTf)_3$ was found be the best catalyst. Electron-rich arenes smoothly underwent chemoselective halogen-promoted F-C alkylation with a variety of alkenes. This method was also found to be very effective with $\alpha.\beta$ -unsaturated carbonyl compounds such as

Org. Lett., Vol. 9, No. 15, 2007

^{(4) (}a) Hajra, S.; Sinha, D.; Bhowmick, M. J. Org. Chem. 2007, 72, 1852–1855. (b) Hajra, S.; Bhowmick, M.; Sinha, D. J. Org. Chem. 2006, 71, 9237–9240. (c) Hajra, S.; Sinha, D.; Bhowmick, M. Tetrahedron Lett. 2006, 47, 7017–7019. (d) Hajra, S.; Bhowmick, M.; Karmakar, A. Tetrahedron Lett. 2005, 46, 3073–3077. (e) Hajra, S.; Maji, B.; Karmakar, A. Tetrahedron Lett. 2005, 46, 8599–8603. (f) Hajra, S.; Bhowmick, M.; Karmakar, A. Tetrahedron Lett. 2005, 46, 3073–3077.

^{(5) (}a) Yamashita, M.; Yamada, K.-I.; Tomioka, K. *J. Am. Chem. Soc.* **2004**, *126*, 1954–1955. (b) Yamashita, M.; Yamada, K.-I.; Tomioka, K. *Tetrahedron* **2004**, *60*, 4237–4242. (c) Andrews, D. R.; Dahanukar, V. H.; Eckert, J. M.; Gala, D.; Lucas, B. S.; Schumacher, D. P.; Zovialov, I. A. *Tetrahedron Lett.* **2002**, *43*, 6121–6125. (d) Alcock, N. J.; Mann, J.; Peach, P.; Wills, M. *Tetrahedron: Asymmetry* **2002**, *13*, 2485–2490. (e) Ehrlich, P. P.; Ralston, J. W.; Michaelides, M. R. *J. Org. Chem.* **1997**, *62*, 2782–2785. (f) Bucholtz, E. C.; Brown, R. L.; Tropsha, A.; Booth, R. G.; Wyrick, S. D. *J. Med. Chem.* **1999**, *42*, 3041–3054. (g) Negash, K.; Nichols, D. E.; Watts, V. J.; Mailman, R. B. *J. Med. Chem.* **1997**, *40*, 2140–2142. (h) Brewster, W. K.; Nicoles, D. E.; Riggs, R. M.; Mottola, D. M.; Lovenberg, T. W.; Lewis, M. H.; Mailman, R. B. *J. Med. Chem.* **1990**, *33*, 1756–1764.

^{(6) (}a) Silva, D. H. S.; Davino, S. C.; de Moraes Barros, S. B.; Yoshida, M. J. Nat. Prod. **1999**, 62, 1475–1478. (b) Schwikkard, S.; Zhou, B.-N.; Glass, T. E.; Sharp, J. L.; Mattern, M. R.; Johnson, R. K.; Kingston, D. G. I. J. Nat. Prod. **2000**, 63, 457–460. (c) Xiao, K.; Xuan, L.; Xu, Y.; Bai, D.; Zhong, D.; Wu, H.; Wang, Z.; Zhang, N. Eur. J. Org. Chem. **2002**, 564–568.

cinnamates and chalcones and produced α -halo- β , β -diaryl-carbonyl compounds in high yields.

Acknowledgment. We thank DST (SR/S1/OC-13/2004), New Delhi for providing financial support. B.M. and S.B. thank UGC and CSIR, New Delhi for their fellowships, respectively.

Supporting Information Available: Detailed experimental procedures, and spectral data for all the compounds **3** and **5**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL070813T

2786 Org. Lett., Vol. 9, No. 15, 2007